We present HeadBlaster, a novel wearable technology that creates motion perception by applying ungrounded force to the head to stimulate the vestibular and proprioception sensory systems. Compared to motion platforms that tilt the body, HeadBlaster more closely approximates how lateral inertial and centrifugal forces are felt during real motion to provide more persistent motion perception. In addition, because HeadBlaster only actuates the head rather than the entire body, it eliminates the mechanical motion platforms that users must be constrained to, which improves user mobility and enables room-scale VR experiences. We designed a wearable HeadBlaster system with 6 air nozzles integrated into a VR headset, using compressed air jets to provide persistent, lateral propulsion forces. By controlling multiple air jets, it is able to create the perception of lateral acceleration in 360 degrees. We conducted a series of perception and human-factor studies to quantify the head movement, the persistence of perceived acceleration, and the minimal level of detectable forces. We then explored the user experience of HeadBlaster through two VR applications: a custom surfing game, and a commercial driving simulator together with a commercial motion platform. Study results showed that HeadBlaster provided significantly longer perceived duration of acceleration than motion platforms. It also significantly improved realism and immersion, and was preferred by users compared to using VR alone. In addition, it can be used in conjunction with motion platforms to further augment the user experience.

HeadBlaster a) applies ungrounded air propulsion force to the head to stimulate the vestibular and proprioception sensory systems to create the perception of persistent self-motion (note: the white smoke is used here only for illustrative purposes; in regular usage, the compressed air is invisible), and b) our system uses 6 air nozzles mounted on VR headsets and combines multiple compressed air jets to generate lateral forces in 360 degrees.

(To be published on SIGGRAPH2020, August 2020)